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ABSTRACT Anoikis, a cell death pathway induced by loss of
normal cell-matrix attachment or upon adhesion to a non-
native matrix, ensures the balance between proliferative poten-
tial of normal cells and maintenance of tissue integrity. Thereby,
anoikis serves as a potential molecular barrier against oncogenic
transformation of normal cells. Cancer cells acquire anoikis
resistance for survival and distant metastatic progression. During
the acquisition of anoikis resistance, tumors modulate multiple
cell signaling parameters through changes in the expression of
up-stream receptors and by dynamically calibrating the depen-
dency on down-stream signaling cascades. Many compounds
that target the tumor-acquired switches in integrins, tumor
antigens, growth factors, metabolic pathways, oxidative
and osmotic-stress signaling are in various phases of pre-
clinical and clinical development. Combinatorial approaches
maximize the therapeutic efficacy and minimize the activa-
tion of alternate signaling pathways, which will otherwise
contribute to drug resistance. In this regard, an integrated
analysis of the mechanisms of action of potential drugs and
lead compounds that can target significant nodes of anoikis
signaling networks will provide a rational frame-work for
further development and clinical use of respective agents, by
formulating more effective combinatorial therapies, in patients
with distinct drug-sensitivity profiles.
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INTRODUCTION

Anoikis: A Conceptual Framework

Normal cells are directed to programmed proliferation, and
are constantly monitored to organize themselves into a
distinct cyto-architecture corresponding to the respective
tissue of origin. The signals relayed from cell surface recep-
tors like integrins are processed by highly interacting intra-
cellular molecular complexes, which regulate the
transduction of signals generated from sensing of the extra-
cellular matrix (ECM) (1). The down-stream cell signaling
pathways form highly interacting channels for delivering the
inputs from cell-matrix surveillance to reprogram the cellu-
lar proliferative, apoptotic, metabolic, oxidative, osmotic
and transcriptional networks in response to dynamic
changes in the nature of cell-matrix contacts (2). Anoikis
(Greek term meaning “homelessness” or “loss of home”) is
a process of cell death initiated consequent to loss of cell-
matrix attachment or upon establishment of inappropriate
cell-matrix contacts. Hence, anoikis serves as an inherent
intracellular barrier against the formation and survival of
potentially oncogenic clones originating within normal tissues
and organs (3).

Molecular Events Regulating Anoikis Resistance
in Tumors

The incidence and progression of cancers is regulated by the
interplay of multiple signaling cascades in a spatially and
temporally regulated manner, depending on the origin of
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tumors, site of colonization and the stage of disease. The
tumors initiate changes in the expression of integrins,
growth factor receptors, oxidative and osmotic-stress cas-
cades in order to acclimatize to the constantly changing
nature of the cell-matrix contacts. Among cell-matrix sen-
sors, integrins serve as master regulators of cell-matrix at-
tachment that relay the signals transduced from respective
ECM ligands to intracellular signaling networks (1–3). The
integrin family of receptors in vertebrates is comprised of 18
α and 8 β subunits, which on ligation give rise to 24 different
types of integrins (4). The expression of integrins has a
tissue-specific pattern, which is significantly altered in
tumors during acquisition of anoikis resistance and malig-
nant progression. Activation of focal adhesion kinase (FAK)
plays a critical role in regulating the integrin-driven relay of
cell-matrix surveillance signals into cells. FAK binds to
cytoplasmic tails of integrins and undergoes auto-
phosphorylation on the Y397 residue to convey cell-matrix
adhesion-induced survival signals (5). The SH2 domains of
Src family kinases bind to the pFAK (Y397) and further
activate FAK by feedback mechanism. Adaptor protein
Grb2 binds to pFAK (Y925), which initiates a signaling that
activates RAS-RAF-MEK-ERK pathway (6). In effect, FAK
overexpression leads to ERK activation followed by phos-
phorylation and proteosome-dependent degradation of pro-
apoptotic Bim (7). FAK also relays its signals through PKB/
Akt pathway to increase the phosphorylation-dependent se-
questration of pro-apoptotic protein Bad with 14-3-3 protein,
which eventually leads to anoikis resistance (8). Silencing of
FAK by siRNA enhances anoikis in anoikis-resistant pancreatic
cancer cells (9). Hence, changes in the expression and signaling
pattern of integrins play a significant role in the survival and
progression of anoikis-resistant tumors.

During acquisition of anoikis resistance, many of the
epithelial tumors acquire mesenchymal phenotype, which
is commonly referred to as “epithelial-mesenchymal-transi-
tion” (EMT) (10). EMT is initiated by a coordinated reprog-
ramming of cellular genetic and protein signaling networks.
E-cadherin is considered as a marker and essential signaling
factor in maintaining the normal epithelial phenotype of
cells (11). Snail is a zinc finger family transcriptional repres-
sor, which is overexpressed in many tumors including high-
grade breast tumors (12). Snail binds to the sin-3A corepres-
sor complex containing histone deacytylase, which in turn
inactivates chromatin and inhibits the transcription of E-
cadherin (13). The onset of EMT also leads to increased
expression of specific growth factors like epidermal growth
factor (EGF), fibroblast growth factor (FGF) and hepatocyte
growth factor (HGF) which increase the activation of down-
stream PI3K, MAPK and mTOR survival cascades
(10,14,15). The enhanced activation or enabling mutations
in the down-stream signaling cascades like oncogenic RAS
promote anoikis-resistance by further activating Rac and

Rho which eventually leads to increased metastatic potential
in tumors (16). EGFR and the signal transduction and
activator of transcription 3 (STAT3) cooperatively induce
EMT by up regulating the transcription factor twist (17).
Thus, the increased expression of transcription factors snail
and twist initiate reprogramming of cellular transcription
machinery to induce EMT. The molecular changes induced
during EMT in turn enhance the ability of cancer cells to
acquire anoikis resistance by modulating both the nature of
cell-matrix surveillance as well as down-stream cell signaling
cascades (18,19).

Anoikis Resistance and Metastatic Potential
of Tumors

In a classical breast cancer study revealing the mechanistic
link between EMT, anoikis resistance and metastases, the
epithelial specific knock-out of E-cadherin and p53 lead to
increased formation of invasive and metastatic mammary
carcinomas along with induction of anoikis resistance and
angiogenesis (20). The increased expression of X-linked
inhibitor of apoptosis (XIAP) induces anoikis resistance in
circulating metastatic prostate cancer cells that are deprived
of normal cell-matrix environment (21). In another study,
silencing of carcino-embryonic antigen cell adhesion mole-
cule 6 (CEACAM6), which activates Akt and induces anoikis
resistance, lead to not only anoikis sensitization but also
inhibition of metastatic potential of pancreatic adenocarci-
noma cells (22). In effect, the acquisition of anoikis resistance
contributes to the survival of transformed cells with aberrant
cell-matrix contacts, invasion of tumor cells into non-native
ECM, survival in matrix-deprived conditions while travers-
ing to different organs and metastatic colonization in distant
organs with different cyto-architecture (2,3,10,18,19).

Though the current clinical interventions for treating
cancers have benefitted from advances in molecular medi-
cine, formulation of effective strategies that match the dy-
namic and adaptive plasticity of tumors is still a strong focus
of contemporary investigations in anti-cancer drug develop-
ment. The individual genetic profiles and presence of co-
morbid diseases in the elderly population, who are com-
monly predisposed to majority of tumors, represent some of
the common factors, which influence the choice of drugs,
dosing, considerations regarding toxicities and potential
clinical outcomes (23). Recent advances in cancer biology
have enabled the characterization and integration of com-
plex genetic and molecular profiles of tumors leading to
emergence of combinatorial cancer therapeutics, which is
serving as an integrated and more reliable platform to assess
the potential lead compounds for further testing of rational
drug combinations (24). In this regard, various anti-cancer
compounds that target specific signaling nodes regulating
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anoikis resistance present precious opportunities for targeting
aggressive and metastatic tumors (Fig. 1).

ROLE OF DRUGS TARGETING CELL-MATRIX
SURVEILLANCE NETWORKS IN ANOIKIS
RESISTANCE

Role of αvβ3 Integrin/B-RAF/MEK Signaling Axis
in Targeting Anoikis Resistance of Melanomas

Metastasizing melanomas acquire aberrations in integrin
expression and associated down-stream signaling pathways.
While invading the dermal matrix, melanoma cells switch
from normal αvβ1 to αvβ3 integrin, which facilitates acqui-
sition of anoikis resistance (25). In 66% of melanomas, the
substitution of valine by glutamic acid at 600 amino acid of
B-RAF (B-RAFV600E) is an important molecular event,
which leads to anoikis resistance by continuous activation
of MEK/ERK and consequent inhibition of pro-apoptotic
Bim (26). Melanomas expressing B-RAFV600E are more
susceptible to down-stream MEK inhibition (27).

In the context of alternation of anoikis signaling in mel-
anomas, the characterization of IH 1062 (3, 5-dichloro-
phenylbiguanide), which can inhibit the αvβ3 integrin is a
salient development. IH1062 attenuates FAK phosphoryla-
tion and induces anoikis in anoikis-resistant M21 mouse
melanoma cells. IH1062 is also effective in decreasing the
pulmonary metastases of melanoma cells in mice tail-vein
anoikis model (28). Recent FDA approval of vemurafenib
(Zelboraf), a novel B-RAFV600E-specific kinase inhibitor,
along with a mandatory 4800 BRAF V600 mutation test is
another salient development for the clinical management of
B-RAFV600E-expressing, un-resectable or metastatic mela-
nomas (29). A MEK inhibitor called AZD6244 has shown
some beneficial effects in a subset of melanoma patients with
B-RAFV600E mutations in phase II clinical trial (30). Also, a
hydrogen sulfate capsule of AZD6244 has been successfully
tested in human malignancies. The results from these studies
on AZD6244 have shown that the formulation of AZD6244
capsule is tolerable and effective in inducing anti-tumor
effects in phase I clinical studies (31). Further trials and
combinations focused on αvβ3 integrin/B-RAFV600E/
MEK inhibitors would be helpful to target anoikis resistance
and metastatic progression of melanomas.

Fig. 1 Novel anti-cancer compounds targeting anoikis regulating receptors and intracellular signal transducers. The mechanisms of action of various drugs
and anti-cancer lead compounds represent potential opportunities for devising individualized and targeted combinatorial regimens.

Novel Compounds for Anoikis-Resistant Cancers 623



Targeting αvβ3/αvβ5/α5β1 Integrins
and Integrin-Linked Kinase (ILK) Signaling
in Glioblastoma Multiforme (GBM)

Glioblastoma multiforme (GBM) is an aggressive primary
brain tumor with a very poor median survival of
16.2 months with chemo-radiotherapy (32). Temozolomide
(TMZ) is the contemporary drug of choice that is extensively
used in the clinical management of GBM, but resistance to
TMZ is very much prevalent. The expression of αvβ3 and
αvβ5 integrins is associated with aggressive histological
grade and neo-angiogenesis in GBM (33). In this regard,
inhibition of αvβ3 and αvβ5 integrins has received signifi-
cant attention in developing potential interventions for
GBM. Cilengitide (EMD 121974), a cyclized pentapeptide
[Arg-Gly-Asp-DPhe-(NMeVal)], can inhibit both αvβ3 and
αvβ5 integrins in GBM (34). Interestingly, cilengitide co-
treatment enhanced the anti-cancer effects of TMZ while
on chemo-radiotherapy consisting of TMZ and external
beam radiation therapy (XRT) (34). An advantageous fea-
ture of cilengitide is the specific inhibition of αvβ3 and αvβ5
integrins. The integrin inhibition following cilengitide treat-
ment was well tolerated and did not affect the associated
processes like platelet aggregation, which is regulated by
normal glycoprotein IIb/IIIa-mediated attachment to
fibrinogen (35).

The tumorigenic GBM spheres also have high α5β1inte-
grin expression (36). A novel α5β1 integrin inhibitor called
JSM6427 has shown potential anti-tumor effects in in vivo
models (37). Activation of integrin-linked kinase (ILK) leads
to anoikis resistance and facilitates metastases (38). Some of
the ILK-targeted studies have also been pursued to inhibit
migration and invasion of GBM (39,40). ILKAS (ISIS Phar-
maceuticals Inc.), an antisense-based formulation that can
target ILK in GBM, has shown potent anti-tumor effects in
in vivo studies (39). Another small molecule ILK inhibitor,
QLT0267, has also been very effective in inducing GBM
tumor regression by inhibiting ILK and VEGF expression
(40). These advances have expanded the choices for develop-
ment of TMZ and integrin-targeted combinatorial therapies
to target drug-resistance in GBM.

Role of Galectin-3/Glucose Regulated Protein 78
(GRP78)-Targeted Interventions in Anoikis-Resistant
Breast Cancer

Caucasian women are more susceptible to breast cancer
than Asian women (41). A recent epidemiological study
revealed that a functional germ line mutation in galectin-3
gene at position 191 leads to substitution of proline with
histidine at the 64th amino acid of galectin-3 protein. The
proline substitution in galectin-3 showed a positive associa-
tion with Caucasians, increased incidence of breast cancer

and acquisition of drug resistance (42). Galectin-3 belongs to
the family of β-galactoside binding lectins, which are in-
volved in the regulation of proliferation, apoptosis and tu-
mor growth (43–45). A significant feature of the galectin-3
gene is the presence of four amino acids motif (Asp-Trp-
Gly-Arg; NWGR) that is also conserved in the BH1 domain
of the anti-apoptotic bcl-2 gene family, which functions in
inducing the anti-apoptotic effects of galectin-3 (46). Hence,
galectin-3 is a novel target for breast cancer interventions in
Caucasian population. Galectin-3 overexpression is also
associated with anoikis resistance in human breast cancer
cells (47). A galectin-3 inhibitor, modified citrus pectin
(MCP) that is enriched in β-galactosidase is being investi-
gated in breast cancer. The administration of MCP leads to
decreased formation of metastatic colonies of breast and
prostate cancer cells in mice tail-vein anoikis model (48).

The expression of glucose regulated protein 78 (GRP78)
positively predicts resistance to taxols and negatively pre-
dicts the “time to recurrence” (TTR) in 67% of breast
cancers (49). The GRP78 protein is a critical regulator of
endoplasmic reticulum (ER) functions like protein folding,
initiating unfolded protein response and controlling the
initiation of ER stress response (50,51). The tumor micro-
environment has a state similar to physiological conditions
that induce ER stress, and in this regard the up regulation of
GRP78 is critical for tumor survival (52,53). The expression
of GRP78 is associated with resistance to many chemother-
apeutic drugs like adriamycin, etoposide and paclitaxel in
breast cancers (49,54,55). Recently, it was also shown that
GRP78 leads to anoikis resistance by interacting with
Cripto, a small, glycosyl-phosphatidylinositol-anchored sig-
naling protein involved in EMT and migration (56). A green
tea constituent called epigallocatechin-3 galate (EGCG) can
effectively inhibit GRP78 expression and sensitize the breast
cancer cells to chemotherapy agents like paclitaxel and
vinblastine (57). Thus, galectin-3 and GRP78 represent
significant targets to develop combinatorial therapies for
drug and anoikis resistance of breast cancer in Caucasian
patients.

Role of α5β1 Integrin/p16INK4a Signaling Axis
in Targeting Anoikis Resistance in Lymphoma
and Pancreatic Cancers

The β1 integrin subunit is known to induce resistance to
DNA-damaging drugs like mitoxantrone and etoposide in
human lymphoma cells (58). The β1 integrin-induced resis-
tance to mitoxantrone and etoposide was associated with
increased binding of the DNA repair protein topoisomerase
II to the DNA, which in turn would explain the decreased
susceptibility of targeted tumors to respective drugs (58).
Curcumin, an active anti-cancer compound being tested in
phase I–III trials in myeloma, lung, pancreatic and colon
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cancers, is a known anoikis-inducing agent, which predom-
inantly acts by inhibiting the anti-apoptotic protein Bcl2
(59). Curcumin is also known to effectively inhibit the ex-
pression of topoisomerase-II (60). Tetrahydro curcumin
(THC), a major metabolite of curcumin, can effectively
target the mitoxantrone resistance protein (MXR or
ABCG2)-expressing cells and sensitize them to mitoxantrone
(61). Thus, the multi-targeting potential of curcumin and its
analogues make them novel candidates for developing com-
binatorial therapies in anoikis- and mitoxantrone-resistant
tumors with high β1 integrin subunit expression.

The expression of α5β1 integrin shows a positive corre-
lation with tumor progression in some cancers like GBM,
whereas loss of α5β1 integrin is observed in some tumors like
pancreatic cancer (36,62). The aberrant expression of α5β1
integrin is often mediated by inherent genetic abnormalities
in the p16INK4a tumor suppressor. The loss of p16INK4a

along with gain in telomerase activity is an early event that
promotes the oncogenic transformation of normal cells (63).
The p16INK4a is frequently lost in pancreatic adenocarcino-
mas along with the loss of α5β1 integrin expression (62).
Transfection of p16INK4a restores anoikis sensitivity along
with inducing the re-expression of α5β1 integrin in pancre-
atic adenocarcinoma cells (44,64). In one of the studies, a
carrier sequence consisting of antennapedia homeodomain
(Cys-RQIKIWFQNRRMKWKK, Trojan peptide) was
conjugated to a 21-residue synthetic peptide corresponding
to 84–103 amino acids of p16INK4a along with an additional
cysteine (DAAREGFLDTLVVLHRAGAR-Cys, p16 pep-
tide) to synthesis the Trojan-p16 peptide. The Trojan-p16
peptide was highly effective in reaching both cytoplasmic
and nuclear compartments of target cells and exerted potent
anti-tumor effects in in-vivo studies. Thus, therapeutic pep-
tides like Trojan-p16 represent a relevant strategy for deliv-
ering p16INK4a to restore anoikis sensitivity in pancreatic
tumors with loss of p16INK4a tumor suppressor (44,64).

ROLE OF DRUGS TARGETING TYROSINE KINASE
NETWORKS IN ANOIKIS RESISTANCE

Targeting TrkB/STAT3/EGFR/c-Src/HGF/COX-2
Signaling in Anoikis-Resistant Head and Neck Cancers

Overexpression of tyrosine kinase receptors and activation
of downstream signaling cascades are involved in regulation
of anoikis resistance (65). A genome-wide retroviral cDNA
screening to identify anoikis-inducing genes in anoikis-
sensitive rat intestinal epithelial (RIE) cells identified a neu-
rotrophic tyrosine kinase receptor, tropomyosin related
kinase-B (TrkB), as a potential molecular antagonist of
anoikis (66). TrkB induces EMT and enhances anoikis re-
sistance by up-regulating the activation of PI3K, AKT and

by increasing the expression of transcription factors twist
and snail, which are associated with anoikis-resistance (18).
TrkB facilitates the formation of large cellular aggregates
that survive and proliferate in suspension. The tumors
formed following inoculation of TrkB-transfected immortal-
ized kidney epithelial cells in mice revealed increased tu-
morigenicity and metastatic spread along with a decrease in
the number of apoptotic cells in tumors colonized to distant
organs, in comparison to tumors where TrkB down-stream
signaling was inactivated by treatment with shRNA for
twist, a mediator of TrkB-induced EMT (18). TrkB expres-
sion is also known to correlate with aggressive metastatic
behavior and poor clinical prognosis (67).

BDNF/TrkB signaling is frequently activated in Epstein-
Barr virus (EBV)-induced nasopharyngeal carcinoma cells,
which are known for their characteristic anoikis resistance
and metastatic phenotype (68). Treatment with K252a, an
indalocarbazole TrkB inhibitor, sensitized the nasopharyn-
geal carcinoma cells to anoikis (68). Further investigations
on pan Trk (Trk A, B and C) inhibitors like AZ-23
(AstraZeneca, Boston, MA) and newly developed small pep-
tide TrkB inhibitor cyclotraxin-B, which can inhibit both
BDNF-dependent and -independent activation of TrkB,
would provide more therapeutic options for targeting
BDNF/TrkB pathway in nasopharyngeal carcinoma
(68–70). BDNF/TrkB signaling is also known to activate
STAT3 (71). The STAT3 signaling is constitutively active
in nasopharyngeal carcinomas and head and neck squa-
mous cell carcinomas (72,73). Activation of STAT3 is
known to cause increased migration and anoikis resistance
induced by endothelial secretory factors like interleukin-6
(IL-6) and Chemokine (C-X-C motif) ligand-8 (CXCL-8)
(74). Curcubitacin I, a natural and selective inhibitor of
JAK/STAT3 pathway, induces anoikis and inhibits in-
vasive potential of nasopharyngeal carcinoma cells.
Hence, targeting TrkB and JAK/STAT3 signaling
would be a mechanistically sound strategy to reactivate
anoikis sensitivity and inhibit metastatic progression in
nasopharyngeal carcinomas (75).

Head and neck squamous cell carcinomas (HNSCC) are
one of the highly anoikis-resistant metastatic tumors (76).
HNSCC express high levels of epidermal growth factor
receptor (EGFR), and EGFR inhibitors were initially used
to target HNSCC (77). But, the resistance to EGFR inhib-
itors is very high due to EGFR mutations, progressive
EMT-induced changes and dependence of HNSCC on
other signaling cascades (78,79). Hepatocyte growth factor
(HGF) and its receptor c-Met are over-expressed in
HNSCC and play a vital role in the anoikis resistance of
HNSCC. HGF/c-Met signaling induces anoikis resistance
in HNSCC via the activation of AKT and ERK, indepen-
dent of NF-κB-mediated transcriptional re-programing (80).
HNSCC also shows increased expression of the oncogene c-
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Src, which is known to transduce receptor tyrosine kinase
signals (81). The oncogene c-Src is known to be an upstream
regulator of c-Met, and the c-Src inhibitor, dasatinib, also
causes c-Met inhibition along with targeting c-Src-sensitive
cells. Interestingly, in a subset of HNSCC cells that are non-
responsive to anti-proliferative effects of c-Src inhibitors, c-
Src was actually inhibited but the down-stream c-Met inhi-
bition was absent (82). In one of the studies on HNSCC,
treatment with EGFR inhibitor, erlotinib, also lead to par-
tial c-Met inactivation, and the combination of erlotinib and
dasatinib was better than single agent treatment (82). A
recent phase II trial on dasatinib alone did not reveal
substantial benefit in HNSCC (83). In another study on
HNSCC, the combination of c-Met inhibitor, PF2341066,
and EGFR inhibitor, gefitinib, induced potent anti-cancer
effects compared to either of the single agents (84). Thus, c-
Met inhibition is a significant factor for targeting both
proliferation and anoikis resistance, than c-Src or EGFR
alone, in HNSCC.

The activation of HGF/c-Met axis also enhances the ex-
pression of cyclooxygenase-2 (COX-2), which is involved in
regulating anoikis in HNSCC (85). The expression of COX-2
leads to increased expression of VEGF and prostaglandin E2
(PGE2), which in turn activates the expression of snail (86).
Snail is a transcription factor that can reduce the expression of
E-cadherin, an epithelial marker and potential tumor suppres-
sor, and induce EMT in epithelial cancers (18). As COX-2 is
an HGF/C-Met-induced anoikis effector, targeting COX-2
would be a rational choice for developing combinatorial ther-
apies given the significant dependency of HNSCC on HGF/c-
Met signaling. A recent phase I clinical trial on combining
COX-2 inhibitor, celecoxib, and EGFR inhibitor, erlotinib,
with irradiation has revealed that the combination is well
tolerated at therapeutically effective doses in recurrent
HNSCC (87). Additional anoikis-targeted interventions in
HNSCC include studies on copper chelators. Treatment with
tetrathiomolybdate, a copper chelator, has shown to effectively
target the survival of HNSCC and restore anoikis sensitivity in
pre-clinical studies (88). In this regard, further integrated
approaches for targeting EGFR/c-Src/c-Met/COX-2 signal-
ing cascades represent rational opportunities for developing
effective interventions for HNSCC.

Targeting Dynamic Changes in EGFR/PDGFR
Signaling in Anoikis-Resistant Non-small Cell Lung
Cancer (NSCLC)

EGFR mutations are common in many tumors of lung and
are predictive of response to specific EGFR inhibitors (89).
The small molecule EGFR inhibitors, erlotinib and gefitinib,
are more effective in lung cancer patients with EGFR muta-
tions, compared to EGFR antibody, cetuximab, which is more
effective in lung cancers with wild-type EGFR (89,90). The

loss of tumor suppressor PTEN is associated with aggressive
and anoikis-resistant progression of lung cancer (91). Recent
studies have revealed that a synthetic derivative of curcumin
called difluorinated-curcumin (CDF) can enhance the PTEN
expression along with inhibiting NF-κB (92). Interestingly, in
lung cancer patients with gefitinib resistance, PPAR-γ agonist
rosiglitazone induced the expression of PTEN and enhanced
sensitivity to gefitinib (93).

In non-small cell lung cancer (NSCLC), receptor tyrosine
kinase signaling undergoes dynamic changes for favoring sur-
vival of tumors during transition from epithelial (epithelial
NSCLC) to mesenchymal (mesenchymal NSCLC) phenotype
with progressive induction of EMT, an established molecular
event during acquisition of anoikis resistance (4,10,18,94). The
mesenchymal NSCLC is less dependent on EGFR signaling as
revealed by reduction in basal phosphorylation of EGFR along
with a decrease in EGF production (94). Usually, epithelial
NSCLC do not express platelet derived growth factor receptors
(PDGFR) whereas mesenchymal NSCLC acquire PDGFR
expression (94). Also, the activation of downstream kinases like
PI3K, SHP2 and STAT3 are enhanced in mesenchymal
NSCLC compared to epithelial NSCLC (94). Treatment with
EGFR inhibitor, erlotinib, in mesenchymal NSCLC with low
EGFR activity, leads to enhanced phosphorylation of PDGFR,
which indicates that PDGFR activation is a compensatory
response to inhibition of residual EGFR activity in mesenchy-
mal NSCLC (94). The up-regulation of PDGFR in mesenchy-
mal NSCLC is significant as PDGFR specifically regulates the
activation of Src kinase in suspended conditions and confers
anoikis resistance in lung cancers (95).

The changes in the dependence of NSCLC from EGFR to
PDGFR/Src signaling with induction of EMT represent po-
tential opportunities for targeting the anoikis resistance of
NSCLC. Hence, PDGFR inhibitors and drugs inhibiting
PI3K, STAT3 and Src would be of potential significance in
anoikis-resistant NSCLC. In this regard, pazopanib (Votrient;
GlaxoSmithKline), an orally active multi-targeted inhibitor of
PDGFR-α/β, VEGFR-1/2/3, and c-kit, which was approved
by FDA in 2009, has demonstrated promising anti-cancer
activity in a phase II clinical trial on NSCLC (96). Tyrosine
kinases activate PI3K/mammalian target of rapamycin
(mTOR) pathway, which regulates the transduction of signals
from growth factor receptors. Though targeting mTOR path-
way is desirable in PDGFR-dependent and anoikis-resistant
NSCLC, due to feed-back activation of AKT/MAPKpathway
upon mTOR inhibition and presence of frequent activating K-
RAS mutations in NSCLC, additional interventions down-
stream ofK-RAS like the use ofMEK/ERK inhibitors become
essential as part of developing combinatorial therapies for
NSCLC (97). Recent development of NVP-BEZ235, a dual
pan-PI3K and downstreammTOR inhibitor, is another prom-
ising drug for targeting NSCLC. A Pre-clinical trial on the
combination of NVP-BEZ235 and the MEK inhibitor,
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AZD6244/ARRY-142886, has shown that the combination
can target even K-RAS-mutant lung cancers (98). As STAT3
activation can potentiate resistance to MEK inhibition, testing
STAT3 inhibitors along with various combinations to target
late-stage mesenchymal NSCLC, which express high levels of
PDGFR, PI3K and STAT3, would be a relevant combinato-
rial strategy to ensure better therapeutic response (99).
SCH66336 is a small molecule inhibitor of STAT3, which
has shown anti-cancer activity in lung cancers (100). Dr. Jing’s
research group has developed a novel class of G-quarted oli-
godeoxynucleotide (GQ-ODN) STAT3 inhibitors, T40214
and T40231, which are effective in causing regression of estab-
lished NSCLC tumors (101). Further rational combinations of
EGFR/PDGFR/PI3K/AKT/mTOR/STAT3 signaling
inhibitors and chemotherapy drugs, depending on epithelial
or mesenchymal histology of the diagnosed lung tumors, would
help to target anoikis-resistant metastatic progression of
NSCLC.

ROLE OF DRUGS MODULATING
OXIDATIVE-STRESS, OSMOTIC-STRESS
AND METABOLIC PATHWAYS IN ANOIKIS
RESISTANCE

Oxidative-stress regulates a plethora of cellular events in-
cluding anoikis. A cross-talk between cell-matrix sensors and
cellular anti-oxidant networks to buffer oxidative-stress was
systematically demonstrated in a comprehensive study by
Brozovic A et al. (102). In this study, αvβ3 integrin-negative
human laryngeal carcinoma (HEp2) cells were transfected
with αvβ3, an integrin that mediates anoikis resistance, and
glutathione (GSH) and reactive oxygen species (ROS) levels
were analyzed. The transfection of αvβ3 integrin lead to a
strong increase in the levels of GSH and a decrease in the
levels of ROS in HEp2-αvβ3 cells compared to control
HEp2 cells (102). Thus, integrins favoring anoikis resistance
appear to have a distinct role in regulating the cellular anti-
oxidant networks. Integrin-induced signals transduce
through adaptor proteins like ILK-FAK-Grb2-SOS com-
plex to activate Ras, which in turn activates down-stream
RAF, Ral and PI3K pathways (4–6). Studies in breast and
colon cancer have revealed that Ral activation leads to
anchorage-independent growth of cancer cells (103).

Role of Ral-Binding Protein 1
(RalBP1 or RLIP76)-Targeted Interventions
in Anoikis-Resistant Metastatic Tumors

Extensive studies have characterized the tumor promoting
and metastasis favoring nature of Ral-binding protein 1
(RalBP1 or RLIP76), a 76 kDa multi-specific Ral-effector that
also predominantly functions as a transporter of glutathione-

conjugates (GS-E) of chemotherapy drugs and toxic end
products of lipid peroxidation (104,105). In our extensive
studies, depletion of RLIP76 by R508 phosphorothioate an-
tisense or inhibition of the transport activity by RLIP76 anti-
body effectively inhibited the proliferative and migratory
capacity of melanomas, neuroblastomas, squamous cell carci-
nomas and tumors of lung, kidney and prostate. RLIP76
inhibition also substantially sensitized the tumor cells to radi-
ation and chemotherapy drugs like doxorubicin, cisplatin,
sorafenib and sunitinib (105,106). Targeting RLIP76 has been
very effective in inhibiting anoikis-resistant metastatic progres-
sion of bladder and prostate cancers (107). Some of the anti-
diabetic drugs like metformin and rosiglitazone inhibit the
transport of GSH-conjugates of lipid peroxidation products
like 4-hydroxynonenal (4HNE) by RLIP76 (108). According
to a prospective study, metformin used for the management of
diabetes mellitus and metabolic syndrome also reduces the
incidence of cancer risk (109). Further studies can reveal
whether the combination of metformin and RLIP76-
directed combinatorial interventions would be a promising
strategy to target the incidence and progression of anoikis-
resistant cancers in patients with co-morbid diseases like dia-
betes mellitus.

Role of Targeting Superoxide Anion Production
and Associated Epigenetic Methylation in Anoikis
Resistance

Recent studies have implicated oxidative-stress and super-
oxide anions in epigenetic events that regulate anchorage-
independent progression in cancers. Melanoma cell lines
established by serial subcultures of anchorage blockade have
increased superoxide anion production, high levels of ex-
pression of DNA methyl transferases (DNMTs), DNMT1
and DNMT3b, and DNA methylation (110). This finding,
for the first time, revealed the potential role of DNMTs in
anoikis resistance of tumors. The treatment of melanoma
cells with N-acetyl cysteine (NAC) and lG-Nitro-l-arginine
methyl ester (L-NAME) further lead to anoikis sensitivity
that was associated with a decrease in DNA methylation and
inhibition of superoxide anion production during anchorage
independent growth (110). In a subpopulation of hormone
refractory prostate cancers (HRPC), there is increased
DNMT1 and DNMT3b expression along with the presence
of enhanced resistance to docetaxel and cisplatin. The treat-
ment with azacytidine leads to consistent decrease in
DNMT1 and DNMT3b expression along with sensitizing
the HRPC cells to docetaxel and cisplatin (111).
Epigallocatechin-3 galate (EGCG), a green tea constituent,
which can directly bind to DNMTs and inhibit the enzy-
matic activity, is being investigated as potential dietary
supplement in many cancer patients (112). Hence, the
rational combination of specific anti-oxidants like NAC, L-
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NAME, EGCG and chemotherapy drugs can lead to per-
sonalized and targeted therapies in patients with epigenetic
methylations and drug resistance.

Potential Role of Na+/K+ ATPase
and Vacuolar -H+ ATPases-Directed
Interventions in Targeting Anoikis Resistance

The survival of anoikis-resistant cells in suspended condi-
tions, while traversing through blood vessels, requires mod-
ulation of signaling proteins regulating osmotic-stress. A
normal Na+ and osmotic gradient is maintained by Na+/
K+ ATPase pump, which has increased expression and
activity in many cancers (113). The β subunit of Na+/K+

ATPase pump is often down-regulated while α subunits are
up-regulated in cancers (114,115). In this context, Na+/K+

ATPase pump inhibitors like cardiac glycosides, due to their
predominant binding to α subunits of the Na+/K+ ATPase
pump, become significant for anti-cancer interventions
(116). In one of the studies, screening of around 2000 com-
pounds lead to identification of ouabain, digoxin, digitoxin,
peruvoside and strophanthidin as potential anoikis-
sensitizing agents in anoikis-resistant PPC-1 prostate cancer
cells. Ouabain effectively inhibited anoikis resistance in vitro
and decreased distant tumor colonization in in vivomodels of
prostate cancer. Overexpression of Na+/K+ ATPase pump
reversed the ouabain-induced reduction in metastatic po-
tential (117). Some of the recent analogues of cardiac glyco-
sides do target other anti-cancer pathways, which would
facilitate tolerable dosage formulations with appropriate
combination with other anti-cancer agents. Activation of
NF-κB leads to anoikis resistance in suspended conditions
(118). UNBS1450, a hemi-synthetic derivative of the novel
cardenolide called 2″-oxovoruscharin, can target NF-κB
along with inhibiting Na+/K+ ATPase pump in lung cancer.
UNBS1450 was more effective than cisplatin, carboplatin and
oxaliplatin in lung cancer models, and is being investigated in
phase I clinical trials for solid tumors (119)

Vacuolar-H+ ATPases play a critical role in the mainte-
nance of cellular proton balance and intracellular redox
potential, which in turn, regulates invasive and metastatic
behavior of cells. The 16 kDa subunit C of vacuolar H+

ATPase was previously shown to interact with β1 integrin
subunits, which are generally associated with adhesion-
dependent signal transduction (120). NiK-12192, a
vacuolar-H+ ATPase inhibitor, induced growth inhibition
similar to anoikis induction in colon cancer cells (121).
Further studies on Na+/K+ ATPase and vacuolar-H+

ATPase inhibitors as single agents and in combination with
other anti-cancer drugs would determine the significance of
osmotic-stress-targeted interventions for the management of
anoikis-resistant tumors.

Potential Role of Mevalonate Pathway-Targeted
Interventions in Anoikis-Resistant Osteosarcomas

Mevalonate pathway that is involved in cellular generation
of cholesterol and isoprenoid lipids like geranyl and farnesyl
pyrophosphates has significant therapeutic implications
(122). Zolendronic acid (ZOL) is a third generation
nitrogen-containing biphosphonate and an inhibitor of the
mevalonate pathway (123). In osteosarcoma, ZOL induces
anoikis sensitivity that can be reversed by the supplementa-
tion with geranylgeraniol, which signifies the role of meval-
onate pathway in regulating anoikis resistance in these
tumors. ZOL appears to be a potential anoikis-targeting
agent for osteosarcomas with favorable pharmacokinetics,
as the administration of even a high dose of 4 mg lead to
only 2 μM serum concentrations, whereas maximum frac-
tion of administered dose reaches the bone (124). The over-
expression of p-glycoprotein, which is associated with multi-
drug resistance in osteosarcomas, did not affect the sensitiv-
ity of osteosarcomas to ZOL (125). Thus, mevalonate path-
way inhibitors like ZOL have significant potential to target
anoikis-resistant osteosarcomas with high p-glycoprotein
expression.

COMBINATORIAL DRUG DEVELOPMENT
STRATEGIES IN CANCER THERAPY

The ability of anoikis-resistant cancer cells to continuously
adapt to their microenvironment and initiate changes in cell
signaling cascades leads to acquisition of high metastatic
potential in tumors (2,3,18,19). The inherent molecular
complexity, number of current clinical cancer cases and an
estimated 55% rise in the incidence of cancers by the year
2025, together necessitate more effective, integrated and
targeted therapies (126). Currently, the majority of combi-
natorial studies are driven by the clinical need for more
effective therapies due to lack of uniform response, emer-
gence of resistance and dose-limiting toxicities (127). The
current drug development and anti-cancer therapies are in
an accelerated phase of transition from single-target inter-
ventions, and are gaining momentum towards multi-target
drugs and combinatorial therapeutics (128).

The combinatorial cancer therapeutics requires extensive
resources and multi-disciplinary teams to ensure optimum
and tumor-selective targeting of the differentially-regulated
signaling networks. But, when compared to single target
interventions, such approaches are mechanistically stron-
ger and represent more effective research strategies for
optimizing the resources of drug development from ini-
tial pre-clinical stages to clinical drug development. Such
effective strategies result from integrated and multi-
parametric assessment of tumor tissue type, grade of
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disease, toxicities associated with conventional clinical
drugs and presence of co-morbid diseases. Also, the
preferential signaling dependency of a tumor at a specific
stage and proximate associated signaling cascades, which
can activated consequent to targeting initial tumor

preferences in survival signaling, needs to be considered.
In this context, the various anoikis resistance-targeting
compounds represent novel opportunities for pursuing
such integrated and combinatorial drug development
(Table I).

Table I (continued)
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l
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Significance of Collective Targeted Approaches
in Advanced and Anoikis Resistant Cancers

In melanomas, the tumor growth phases include “radial
growth phase (RGP)” and “vertical growth phase (VGP)”
(129). Melanomas behave as highly metastatic tumors after
invading the dermis and hence, malignant melanomas in
RGP are usually surgically excised but post-surgical recur-
rence is common from satellite lesions, which become ag-
gressive once the primary tumor is removed (129). Many of
the molecular events like increased expression of αvβ3 integ-
rin and B-RAF associated with VGP initiate anoikis-
resistance as a survival mechanism for melanomas in non-
native dermal matrix (25,26,130). Thus, pre-operative and

post-operative anoikis-targeted interventions for inhibiting
αvβ3 integrin/B-RAF/MEK expression represent rational
choices to achieve effective tumor clearance and prevent
recurrence in malignant melanomas. Glioblastoma multi-
forme (GBM) is another tumor which has characteristically
diffuse borders and high metastatic potential which together
present challenges for effective tumor resection (131). In this
regard, the collective targeted strategies for integrin and
ILK signaling in GBM would be a novel choice to enhance
the surgical outcomes and prevent recurrence in GBM.

Dynamic calibration of signaling cascades with changes
in morphological phenotype and metastatic progression of
tumors is another area of interventional focus in cancers.
For example, the anti-cancer drugs like erlotinib or gefitinib

Fig. 2 Schematic diagram representing the significance of personalized network targeted cancer therapeutics The anti-cancer drugs like erlotinib
or gefitinib were used in the treatment of EGFR expressing tumors including NSCLC (a, “X”). The next generation of drugs like pazopanib, an
orally active multi-targeted inhibitor of PDGFR-α/β, VEGFR-1/2/3, and c-kit represent an advanced class of drugs that can be considered to
target switch from EGFR to PDGFR as well as increased VEGFR expression in NSCLC (b, “Y”). Further trials on new class of anti-cancer agents
like NVP-BEZ235, a new orally active dual pan-PI3K and downstream mTOR inhibitor (“Z”) along with a potential combination with other
compounds like inhibitors of STAT3 (“R-1”) and inhibitors of Src (“R-2”) would be relevant strategies to target the distinct tumor signaling profile
in mesenchymal NSCLC having additional activation of STAT3 and Src. The choice of specific anti-cancer compounds can be further optimized
in individual patients depending on the patients’ genetic and toxicological profile as well as proteomic and genomic characterization of incident
tumors for elucidating the differential protein expression and presence of mutations, respectively (c).
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were used in the treatment of EGFR-expressing tumors
including NSCLC (89,90). EMT associated with anoikis
resistance leads to switch from EGFR to increased PDGFR
expression and mesenchymal phenotype in advanced
NSCLC (71). The next generation of drugs like pazopanib,
an orally active multi-targeted inhibitor of PDGFR-α/β,
VEGFR-1/2/3 and c-kit represent an advanced class of
drugs that can be considered to target the switch from
EGFR to PDGFR as well as increased VEGFR expression
in NSCLC (96). But, the switch from EGFR to PDGFR is
also associated with increase in downstream STAT3 and Src
signaling in mesenchymal NSCLC (94). Hence, further trials
on new class of anti-cancer agents like NVP-BEZ235, a new
orally active dual pan–PI3K and downstream mTOR in-
hibitor along with a potential combination with other com-
pounds like inhibitors of STAT3 and Src would be relevant
strategies to target mesenchymal NSCLC (98–101). The
choice of specific anti-cancer compounds can be further
optimized in individual patients depending on the patients’
genetic and toxicological profile as well as proteomic and
genomic characterization of incident tumors. Such integra-
tion of distinct tumor signaling and patient profiles will lead
to effective personalized network targeted cancer therapeutics
(Fig. 2).

Resources for Future Development of Effective
Combinatorial Cancer Therapies

Development of proteomics utilizing ultra-high sensitive
mass spectrometry methods and wider application of pro-
teomic softwares like Ingenuity pathway analyses (IPA, In-
genuity Systems) have amplified the technical potential to
elucidate the distinct regulation of complex networks in
specific genotypes of cancer along with revolutionizing the
identification of differentially-regulated signaling networks
that are predictive of therapeutic responses (132). Based on
such integration of signaling network parameters, we recent-
ly characterized and reported the anti-cancer effects of a
novel and highly effective flavonoid vicinen-2 as a single
agent and in synergistic combination with docetaxel in pros-
tate cancer (133). The results from NCI-60 panel, based on
testing large number of chemicals as part of studies under
developmental therapeutics program, have expanded the
knowledge database and contributed to the formulation of
COMPARE algorithm for analyzing potential response to
intended anti-cancer agents before pursuing elaborate test-
ing of respective agents (134). The TheraScreen EGFR 29
Mutation Test, KRAS LightMix (TIB MolBiol) and Ther-
aScreen K-RAS Mutation Kits (DxS Ltd.) are some of the
commercially available tests that help to evaluate EGFR
and K-RAS mutation status in patients with solid tumors
(135,136).

In view of advances in the molecular understanding of
dynamic changes in tumor signaling profiles and parallel de-
velopment of screening tests to predict the choice of specific
anti-cancer agents, personalized and network-targeted thera-
pies are becoming increasingly essential. Such pursuit of inno-
vative research strategies by rationally incorporating
combinatorial drugs, in the context of specific signaling net-
work adaptations and dependencies in respective tumors,
would enhance the productivity and translational relevance
of drug development. Further trials on the specific combina-
tions of anti-cancer compounds in patients with distinct geno-
types and drug-sensitivity profiles will facilitate the
development of interventional strategies based on advanced
combinatorial cancer therapeutics.
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